Articulation Rate Filtering of CQCC Features for Automatic Speaker Verification
نویسندگان
چکیده
This paper introduces a new articulation rate filter and reports its combination with recently proposed constant Q cepstral coefficients (CQCCs) in their first application to automatic speaker verification (ASV). CQCC features are extracted with the constant Q transform (CQT), a perceptually-inspired alternative to Fourier-based approaches to time-frequency analysis. The CQT offers greater frequency resolution at lower frequencies and greater time resolution at higher frequencies. When coupled with cepstral analysis and the new articulation rate filter, the resulting CQCC features are readily modelled using conventional techniques. A comparative assessment of CQCCs and mel frequency cepstral coefficients (MFCC) for a short-duration speaker verification scenario shows that CQCCs generally outperform MFCCs and that the two feature representations are highly complementary; fusion experiments with the RSR2015 and RedDots databases show relative reductions in equal error rates of as much as 60% compared to an MFCC baseline.
منابع مشابه
Feature Selection Based on CQCCs for Automatic Speaker Verification Spoofing
The ASVspoof 2017 challenge aims to assess spoofing and countermeasures attack detection accuracy for automatic speaker verification. It has been proven that constant Q cepstral coefficients(CQCCs) processes speech in different frequencies with variable resolution and performs much better than traditional features. When coupled with a Gaussian mixture model (GMM), it is an excellently effective...
متن کاملDetection of Replay Attacks Using Single Frequency Filtering Cepstral Coefficients
Automatic speaker verification systems are vulnerable to spoofing attacks. Recently, various countermeasures have been developed for detecting high technology attacks such as speech synthesis and voice conversion. However, there is a wide gap in dealing with replay attacks. In this paper, we propose a new feature for replay attack detection based on single frequency filtering (SFF), which provi...
متن کاملConstant Q cepstral coefficients: A spoofing countermeasure for automatic speaker verification
Recent evaluations such as ASVspoof 2015 and the similarly-named AVspoof have stimulated a great deal of progress to develop spoofing countermeasures for automatic speaker verification. This paper reports an approach which combines speech signal analysis using the constant Q transform with traditional cepstral processing. The resulting constant Q cepstral coefficients (CQCCs) were introduced re...
متن کاملCountermeasures for Automatic Speaker Verification Replay Spoofing Attack : On Data Augmentation, Feature Representation, Classification and Fusion
The ongoing ASVspoof 2017 challenge aims to detect replay attacks for text dependent speaker verification. In this paper, we propose multiple replay spoofing countermeasure systems, with some of them boosting the CQCC-GMM baseline system after score level fusion. We investigate different steps in the system building pipeline, including data augmentation, feature representation, classification a...
متن کاملNovel Variable Length Teager Energy Separation Based Instantaneous Frequency Features for Replay Detection
Replay attacks presents a great risk for Automatic Speaker Verification (ASV) system. In this paper, we propose a novel replay detector based on Variable length Teager Energy OperatorEnergy Separation Algorithm-Instantaneous Frequency Cosine Coefficients (VESA-IFCC) for the ASV spoof 2017 challenge. The key idea here is to exploit the contribution of IF in each subband energy via ESA to capture...
متن کامل